DeepSeek前脚发新论文,奥特曼立马跟上:GPT-5就在几个月后啊

关注
接下来是o1和o4-mini

编者按:本文来自微信公众号 “量子位”(ID:QbitAI),作者:金磊,创业邦经授权转载。

有点意思。

这不DeepSeek前脚刚刚上新了一篇关于推理时Scaling Law的论文嘛,引得大家纷纷联想是不是R2马上要来了

然鹅……奥特曼这边却发了一条“变卦”的消息:

计划改变:我们可能在几周之后先发布o3和o4-mini

图片

至于大家翘首以盼的GPT-5,奥特曼表示:

将在几个月之后,而且效果会比我们最初设想的还要好。

至于原因,奥特曼也做出了解释。

大概意思就是,顺利整合所有内容比他们想象的要困难得多,希望确保有足够的能力来支持预期的需求。

图片

咱就是说啊,现在真的是DeepSeek这边一有点声响,OpenAI那边就得有点动作来紧跟一下了。

DeepSeek新论文

在这个小插曲之后呢,我们还是把目光聚焦在DeepSeek这篇新论文身上。

这篇论文的名字叫做Inference-Time Scaling for Generalist Reward Modeling,由DeepSeek和清华大学共同提出。

图片

这篇研究核心的亮点,就是提出了一个叫做SPCT方法(Self-Principled Critique Tuning)的方法——

首次提出通过在线强化学习(RL)优化原则和批判生成,实现推理时扩展。

之所以要做这么一项研究,是因为之前大家用奖励模型(Reward Model, RM)在RL中为大语言模型生成奖励信号。

但现有的RM在通用领域却表现出受限的情况,尤其是在面对复杂、多样化任务的时候。

因此,就出现了两个关键挑战点。

一个是通用RM需要灵活性(支持单响应、多响应评分)和准确性(跨领域高质量奖励)。

另一个则是现有RM(如标量RM、半标量RM)在推理时扩展性差,无法通过增加计算资源显著提升性能。

图片

为了解决这个问题,DeepSeek和清华大学团队便提出了SPCT。

图片

整体来看,这项研究主要包含三大核心技术点。

首先就是生成式奖励模型(GRM)。

它采用点式生成奖励模型(Pointwise GRM),通过生成文本形式的奖励(如critiques)而非单一标量值,支持灵活输入(单响应、多响应)和推理时扩展。

图片

其中,C是生成的critique,fextract从中提取分数。

接下来,是关键的SPCT了。

主要是通过在线强化学习(RL)训练GRM,使其能动态生成高质量的原则(principles)和批判(critiques),从而提升奖励质量。

整体来看,SPCT是一个两阶段的过程,它们分别是:

  • 拒绝式微调(Rejective Fine-Tuning)

    :冷启动阶段,通过采样和拒绝策略生成初始数据。

  • 基于规则的在线RL

    :使用规则化奖励函数优化原则和批判的生成,鼓励模型区分最佳响应。

在此基础上,便是第三个技术点,即推理时扩展技术

先是通过多次采样生成多样化的原则和批判,投票聚合最终奖励,扩展奖励空间。

再训练一个辅助模型过滤低质量采样,进一步提升扩展效果。

基于上述的方法,团队也对结果做了一波测试。

在Reward Bench、PPE、RMB等基准上,DeepSeek-GRM-27B显著优于基线方法(如LLM-as-a-Judge、标量RM),且通过推理时扩展(32次采样)性能进一步提升(如Reward Bench准确率从86.0%提升至90.4%)。

图片

总而言之,这篇研究证明了推理时扩展在通用RM中的有效性,性能超越训练时扩展。

One More Thing

奥特曼发布“变卦”消息之外,还不忘给自己带一波货,称有两本他亲自参与的书即将发布:

  • 一本是Keach Hagey写的关于奥特曼本人的书

  • 一本是Ashlee Vance写的关于OpenAI的书

图片

论文地址:
https://arxiv.org/abs/2504.02495

参考链接:

[1]https://x.com/sama/status/1908167621624856998

[2]https://techcrunch.com/2025/04/04/openai-says-itll-release-o3-after-all-delays-gpt-5/

[3]https://x.com/sama/status/1908163013192069460

本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系editor@cyzone.cn。

反馈
联系我们
推荐订阅